221 lines
5.0 KiB
Go
221 lines
5.0 KiB
Go
package day20
|
|
|
|
import (
|
|
"adventofcode2024/utils/dijkstra"
|
|
"adventofcode2024/utils/grid2d"
|
|
"adventofcode2024/utils/inputs"
|
|
"fmt"
|
|
)
|
|
|
|
type (
|
|
Vec struct{ x, y int }
|
|
Dir struct{ x, y int }
|
|
Cell rune
|
|
Move struct {
|
|
p Vec
|
|
d Dir
|
|
}
|
|
Maze struct {
|
|
height, width int
|
|
start Vec
|
|
end Vec
|
|
grid *grid2d.Grid[Cell]
|
|
}
|
|
)
|
|
|
|
const (
|
|
WALL Cell = '#'
|
|
CORRIDOR Cell = '.'
|
|
START Cell = 'S'
|
|
END Cell = 'E'
|
|
PATH Cell = '*'
|
|
)
|
|
|
|
var (
|
|
NORTH = Dir{0, -1}
|
|
EAST = Dir{1, 0}
|
|
SOUTH = Dir{0, 1}
|
|
WEST = Dir{-1, 0}
|
|
DIRECTIONS = []Dir{NORTH, EAST, SOUTH, WEST}
|
|
)
|
|
|
|
func Part1(input string) int {
|
|
maze := Maze{}.Parse(input)
|
|
fmt.Println(maze)
|
|
data := inputGraph(*maze)
|
|
graph := dijkstra.CreateGraph(data)
|
|
path, dist := dijkstra.GetShortestPath(data.From, data.To, graph)
|
|
for _, p := range path {
|
|
maze.grid.Set(p.X, p.Y, PATH)
|
|
}
|
|
fmt.Println(maze)
|
|
return dist
|
|
}
|
|
func Part2(input string) int {
|
|
const saves int = 100
|
|
count := 0
|
|
maze := Maze{}.Parse(input)
|
|
// fmt.Println(maze)
|
|
data := inputGraph(*maze)
|
|
graph := dijkstra.CreateGraph(data)
|
|
path, dist := dijkstra.GetShortestPath(data.From, data.To, graph)
|
|
cost := make(map[Vec]int)
|
|
cheats := []Cheat{}
|
|
|
|
for i, p := range path {
|
|
cost[Vec{p.X, p.Y}] = i
|
|
}
|
|
cheat_data := cheatGraph(*maze)
|
|
|
|
for _, s := range path[:len(path)-saves] {
|
|
fmt.Println("Checking start:", s)
|
|
for _, e := range path[saves:] {
|
|
fmt.Println("\tChecking end", e)
|
|
cheat_data_1 := cheatGraphAdd(maze, cheat_data, s)
|
|
cheat_data_2 := cheatGraphAdd(maze, cheat_data_1, e)
|
|
cheat_graph := dijkstra.CreateGraph(cheat_data_2)
|
|
_, cheat_dist := dijkstra.GetShortestPath(dijkstra.Point{X: s.X, Y: s.Y}, dijkstra.Point{X: e.X, Y: e.Y}, cheat_graph)
|
|
fmt.Println("\t\tcheat distance:", cheat_dist)
|
|
if cheat_dist <= 20 {
|
|
cheat := Cheat{start: Vec{s.X, s.Y}, end: Vec{e.X, e.Y}, cost: cost[Vec{s.X, s.Y}] + cheat_dist + dist - cost[Vec{e.X, e.Y}]}
|
|
fmt.Println("\t\tSaving cheat:", cheat)
|
|
cheats = append(cheats, cheat)
|
|
}
|
|
}
|
|
}
|
|
for _, cheat := range cheats {
|
|
save := dist - cheat.cost
|
|
// fmt.Println("[", i, "]", "save", save)
|
|
if save >= saves {
|
|
count++
|
|
}
|
|
}
|
|
return count
|
|
}
|
|
|
|
func abs(in int) int {
|
|
if in < 0 {
|
|
return in * -1
|
|
}
|
|
return in
|
|
}
|
|
|
|
func inputGraph(maze Maze) dijkstra.InputGraph {
|
|
data := dijkstra.InputGraph{}
|
|
data.From = dijkstra.Point{X: maze.start.x, Y: maze.start.y}
|
|
data.To = dijkstra.Point{X: maze.end.x, Y: maze.end.y}
|
|
for y := 0; y < maze.height; y++ {
|
|
for x := 0; x < maze.width; x++ {
|
|
if maze.grid.Get(x, y) == WALL {
|
|
continue
|
|
}
|
|
for _, dir := range DIRECTIONS {
|
|
nx, ny := x+dir.x, y+dir.y
|
|
if nx < 0 || ny < 0 || nx >= maze.width || ny >= maze.height {
|
|
continue
|
|
}
|
|
if maze.grid.Get(nx, ny) == WALL {
|
|
continue
|
|
}
|
|
data.Graph = append(data.Graph, dijkstra.InputData{
|
|
Source: dijkstra.Point{X: x, Y: y},
|
|
Destination: dijkstra.Point{X: nx, Y: ny},
|
|
Weight: 1,
|
|
})
|
|
}
|
|
}
|
|
}
|
|
|
|
return data
|
|
}
|
|
|
|
func cheatGraph(maze Maze) dijkstra.InputGraph {
|
|
data := dijkstra.InputGraph{}
|
|
for y := 0; y < maze.height; y++ {
|
|
for x := 0; x < maze.width; x++ {
|
|
if maze.grid.Get(x, y) == CORRIDOR {
|
|
continue
|
|
}
|
|
for _, dir := range DIRECTIONS {
|
|
nx, ny := x+dir.x, y+dir.y
|
|
if nx < 0 || ny < 0 || nx >= maze.width || ny >= maze.height {
|
|
continue
|
|
}
|
|
if maze.grid.Get(nx, ny) == CORRIDOR {
|
|
continue
|
|
}
|
|
data.Graph = append(data.Graph, dijkstra.InputData{
|
|
Source: dijkstra.Point{X: x, Y: y},
|
|
Destination: dijkstra.Point{X: nx, Y: ny},
|
|
Weight: 1,
|
|
})
|
|
}
|
|
}
|
|
}
|
|
|
|
return data
|
|
}
|
|
|
|
func cheatGraphAdd(maze *Maze, in dijkstra.InputGraph, s dijkstra.Point) dijkstra.InputGraph {
|
|
x := s.X
|
|
y := s.Y
|
|
out := dijkstra.InputGraph{}
|
|
out.From = in.From
|
|
out.To = in.To
|
|
out.Graph = append([]dijkstra.InputData{}, in.Graph...)
|
|
|
|
for _, dir := range DIRECTIONS {
|
|
nx, ny := x+dir.x, y+dir.y
|
|
if nx < 0 || ny < 0 || nx >= maze.width || ny >= maze.height {
|
|
continue
|
|
}
|
|
if maze.grid.Get(nx, ny) == CORRIDOR {
|
|
continue
|
|
}
|
|
out.Graph = append(out.Graph, dijkstra.InputData{
|
|
Source: dijkstra.Point{X: x, Y: y},
|
|
Destination: dijkstra.Point{X: nx, Y: ny},
|
|
Weight: 1,
|
|
})
|
|
}
|
|
return out
|
|
}
|
|
|
|
func (m Maze) Parse(input string) *Maze {
|
|
m.grid = inputs.ToGrid2D(input, "\n", "", '?', func(c string) Cell { return Cell(c[0]) })
|
|
m.height, m.width = m.grid.SizeY(), m.grid.SizeX()
|
|
for y := 0; y < m.height; y++ {
|
|
for x := 0; x < m.width; x++ {
|
|
c := m.grid.Get(x, y)
|
|
switch c {
|
|
case WALL, CORRIDOR:
|
|
m.grid.Set(x, y, c)
|
|
case START:
|
|
m.grid.Set(x, y, CORRIDOR)
|
|
m.start = Vec{x, y}
|
|
case END:
|
|
m.grid.Set(x, y, CORRIDOR)
|
|
m.end = Vec{x, y}
|
|
}
|
|
}
|
|
}
|
|
return &m
|
|
}
|
|
|
|
func (m *Maze) String() string {
|
|
s := ""
|
|
for y := 0; y < m.height; y++ {
|
|
for x := 0; x < m.width; x++ {
|
|
if y == m.start.y && x == m.start.x {
|
|
s += string(START)
|
|
} else if y == m.end.y && x == m.end.x {
|
|
s += string(END)
|
|
} else {
|
|
s += string(m.grid.Get(x, y))
|
|
}
|
|
}
|
|
s += "\n"
|
|
}
|
|
return s
|
|
}
|